

3rd Semester Project
Dinnergeddon – System Development Report

Stefan Nikolaev Borisov

Linda Augustina Carolus Fuchs

Alexander Ignácz

Stefan Jõemägi

Dimitar Bogomilov Pilyakov

Nikola Anastasov Velichkov

UCN – COMPUTER SCIENCES AP DEGREE

DMAI0917 – PROJECTGROUP 7

This page is intentionally left blank.

System Development Report – Group 7

University College of Northern Denmark
Computer Sciences Academy Profession Degree Programme

Class:
DMAI0917– Project group 7

Title:
3rd Semester Project – Dinnergeddon

System Development Report

Project participants:
Stefan Nikolaev Borisov

Linda Augustina Carolus Fuchs

Alexander Ignácz

Stefan Jõemägi

Dimitar Bogomilov Pilyakov

Nikola Anastasov Velichkov

Supervisor:
Dimitrios Kondylis

Submission date: 17-12-2018

Number of characters including white spaces, excluding cover, Table of Contents, tables and

appendices: 41,696

Stefan N. Borisov Linda A.C. Fuchs Alexander Ignácz

Stefan Jõemägi Dimitar B. Pilyakov Nikola A. Velichkov

Abstract

Creating working software is only a small part of

software development. A much greater part is the

choice of proper software development

methodologies, the pros and cons of the different types

and the decision-making process. In equal degrees, it is

important to be able to ensure a high-quality standard

for the final product. Which tools can be used and what

are the consequences of developing in this way?

The use of agile methodologies allows for greater

flexibility within the system development process and

gives the team the chance to change parts of the

system as seen fit all with a better implementation in

mind. Though one has to be careful that quality does

not suffer in the pursuit of implementing features.

This project revolves around the use of the Scrum

methodology and the delivery of working software at

the end of each sprint for a total of 5 sprints to

conclude the project. This also includes the

controversial sprint 0.

3rd Semester Project - Dinnergeddon

This report has been written as part of the 3rd semester project for the Computer Sciences course at

UCN, University College Nordjylland. The main objective of this project according to (University College

Nordjylland, 2014, pp. 7-8) is to “master more sophisticated elements in the computer science

profession and realize distributed software systems; and contribute to the selection and use of

technology in the context of system development and programming of distributed IT systems as well

as give the students thorough knowledge of aspects of technology.” and “make new and further

developments and integration of distributed IT systems on a systematic basis using situational modern

system development methods and techniques” within the timeframe that has been given by the

institution.

System Development Report – Group 7

Preface
We would like to thank Dimitrios Kondylis for his continuing support during this project. The project

was a challenging, and we set the bar high right from the start. Dimitrios’ support and feedback were

invaluable to keep the project on track and ensure that we had a healthy view on the reality and

achievability of this project.

We would also like to thank Michael H. Andersen for his support during the project, giving use some

good pointers about what to look out for with our web application and the concurrency issue.

Lastly, we would also like to thank Simon Schmidt-Jakobsen for his help with overcoming some of the

trickier obstacles we encountered while programming our project.

Thank you,

Stefan B., Linda, Alexander, Stefan J., Dimitar and Nikola.

17-12-2018

3rd Semester Project - Dinnergeddon

This page is intentionally left blank.

System Development Report – Group 7

Contents
Introduction .. 7

1. System Development introduction. .. 9

1.1. Methodologies .. 9

1.1.1. Plan Driven Development ... 9

1.1.2. Agile... 10

1.2. Evaluating the methodology selection using Boehm’s factors ... 12

1.3. Risk Analysis .. 13

2. Quality Assurance and Quality Control ... 14

2.1. Test Driven Development ... 14

3. Planning and Architecture .. 15

3.1. Project Plan ... 15

3.2. Architecture .. 15

4. Reflection on the agile methodology in the project ... 16

4.1. Sprint 0 .. 16

4.2. Sprint 1 .. 17

4.3. Sprint 2 .. 18

4.4. Sprint 3 .. 19

4.5. Sprint 4 .. 20

5. Conclusion ... 21

6. Evaluation ... 22

6.1. Project Evaluation ... 22

6.2. Individual evaluations ... 22

Appendix 1. Literature list ... 25

Appendix 2. 3rd Semester Project Group Contract .. 26

Appendix 3. Problem Statement ... 27

3rd Semester Project - Dinnergeddon

This page is intentionally left blank.

System Development Report – Group 7

7

Introduction
This report has been written as part of the System Development section of the 3rd Semester project

for Computer Sciences AP Degree at UCN Aalborg. The goal for this project is to successfully create

software in the C# language which demonstrates the student’s ability to create client-server

architecture within a piece of software which also solves a concurrency problem. This report shows

the steps taken to build working software from a system development perspective, which also takes

security into consideration (Nordjylland, University College, 2018).

The rest of this introduction will detail the problem area and -statement in more detail, go into how

data is collected and processed, will detail the structure of the rest of the report and finally some

logistical information regarding version control and databases used. The team working on this

project has agreed to sign a group contract. A copy of this can be found in Appendix 2. This copy is

not signed, however by signing this report all group members have agreed to this contract.

Problem Area

In order to get a clear view of the problem, and in order to get some experience dealing with a

(fictional) company and (fictional) external product owner, the problem area and problem statement

(outlined in the next section) were written from the perspective of Best Design Group (BDG), who

has been contacted by Worst Production Company (WPC) with a request for a retro game. ‘WPC’

wants a demo of a game that shows a concept of zombies going rogue in a dinner show so that they

can see how their customers would react to it.

‘WPC’ has requested ‘BDG’ to create a web application to go with the game so that players could

sign-up for a dinner show specifically with their friends. Furthermore, the company can only afford

one server.

Due to the ‘WPC’s’ limited resources, storage space and server architecture will have to be taken

into consideration. As there would be multiple connections to the server, concurrency would have to

be accounted for. The company wishes to use a website so that users will be able to download their

game, register and reserve spaces for the game online.

This report will delve into the system development process of making the software and which

decisions were made going forward in the different sprints.

Problem Statement

Now that the problem area has been clearly defined it is vital to write a problem statement which

covers all aspects of the project. The main question which needs to be answered is as follows:

“How does ‘BDG’ create software which is built using C# (.NET framework) and incorporates a

client-server architecture with WCF within five Scrum sprints?”

The programming and technologies report which was written alongside this report will go further

into the sub questions which focus on the programming and technologies aspect of this project. In

this report the emphasis is put on answering this main question from a system development point of

view. For a quick answer, please refer to Chapter 5 Conclusion.

The full problem statement can be found in Appendix 3.

3rd Semester Project - Dinnergeddon

8

Empirical Data Collection

During the construction of this project, external resources, like books, electronic publications and

websites were accessed to gather all information necessary to come to a successful fruition of the

project. To ensure these all live up to the high-quality standard which is expected from a higher

educational institute, only information which has been gathered through empirical research has

been used.

Structure of the report

The main content of this report starts in Chapter 1 with a more detailed look at system development

and the different methodologies which can be used for software development with emphasis put on

the methodology used for this project, and why, including Boehm’s method selection and a risk

analysis.

Chapter 2 goes into quality criteria and assurance for the project, including a paragraph dedicated to

test-driven development

Chapter 3 takes a closer look at the planning and architecture used in the project.

After the project setup has been discussed it is time to take a closer look at the actual system

development during the project. Chapter 4 is split up in 5 different sections, one paragraph for each

of the 5 sprints used for this project. It will highlight the difficulties and challenges faced during each

sprint and the decisions made to overcome them and ensure better progress in the next sprint.

Closing the report are chapter 5 and 6 which will first discuss the conclusion of the system

development process and finally the evaluation which covers the project, as well as group members

giving feedback to one another.

Finally, any relevant appendixes which will be referred to in various places the report.

Vision for the project

To create great software solutions to better everyday life for everyone!

Logistical Information

Database: dinnergeddon.database.windows.net

GitHub repository: https://github.com/best-design-group/Dinnergeddon/commits/master

Version commit number: 390

https://github.com/best-design-group/Dinnergeddon/commits/master

System Development Report – Group 7

9

1. System Development introduction.
This chapter will focus on system development methodologies, what they are and how they are

used. By the end of this chapter it will become clear why the choice was made to use an agile

development methodology, in this case Scrum and XP, and what the positive and negative aspects

are of each in this project.

1.1. Methodologies

“A software development methodology is a way of managing a software development project.”

(Young, David C.; Computer Sciences Corporation, 2013, p. 1). There are many different

methodologies available and each has their own purpose, from very prescriptive Waterfall and

Rational Unified Process (RUP), to very loose and adaptive Kanban, and every aspect in between, as

is visualized in Figure 1

Figure 1: System Development Methodologies

1.1.1. Plan Driven Development
A few examples of some of the more well-known types of plan-driven development methodologies.

Waterfall

A good example of a strict plan driven approach is the, now almost outdated, Waterfall method.

Waterfall incorporates a lengthy planning phase which often takes up more than half of the project

time. Once development starts it cascades, like a waterfall, from part A, to B, to C, without going

back to make changes. All requirements are set from the start and every angle is explored. Waterfall

is used mainly in situations where the software will be used in situations where any mistakes in the

software can have dramatic consequences, including injury and loss of life. Think for example about

software for hospital equipment, not a very agile approach and not suitable for the project as

adaptability is required.

Rational Unified Process

The Rational Unified Process has similarities to waterfall, in that is has fixed phases of inception,

elaboration, construction and transition, but unlike waterfall, RUP is an interactive process. Every

iteration serves as an opportunity to further change and expand the software in an iterative way.

RUP relies heavily on the use of artifacts, with a list of over 70 artifacts used, the difference is clear

in Figure 1 above. When compared to XP and Scrum, RUP has an attitude of “lets create the artifact

just in case we need it” rather than, lets only create it when we need it, like in Scrum and XP.

3rd Semester Project - Dinnergeddon

10

1.1.2. Agile
On the other side of the methodologies’ spectrum is a more adaptive and agile approach, and these

are also the methodologies used for this project. Scrum is more agile than eXtreme Programming

(XP), but both are still much more agile and adaptable than RUP and waterfall (Kniberg & Skarin,

2010, pp. 9-10).

EXtreme Programming (X3M P)

Extreme programming does not have as many artifacts as (R)UP, but heavily relies on set values and

practices. If one of these values falls away, the whole methodology fails. Below a brief explanation of

the values and practices and examples of how these were implemented in the project.

4 Values:

Communication – The value of communication is critical for the success of the project as it

implements one of the core aspects of agile development, constant communication within the team

and with the external product owner in order to improve on the project in an adaptive way.

In the project there was a new product owner every sprint. This ensured that each team member

had the ability to both practice as product owner and get a better understanding of the product in

general. Having the product owner change also meant that the emphasis on the most important

parts to implement first changed from sprint to sprint, as they would in a real-life situation.

Great emphasis was also put on having the team together to work on the project on most days, as it

is a lot easier to simply tap someone on the shoulder to ask a question, rather than having to pick up

the phone or write something over online communication.

Simplicity – In XP it is critical to keep code as simple as possible. Simple code makes for easily

readable code and code which is easy to adjust. The whole concept of agile development is the

ability to change, so it goes without saying that simplicity goes hand in hand with this. Simplicity also

has the benefit of ensuring low coupling.

In the project this same standard has been implemented and it had the positive effect of being able

to easily change the code and refactor if necessary.

Feedback – The value of feedback doesn’t only rely on feedback from product owner, rather from

feedback from all levels on all levels. What that means is that feedback received from an early alpha

test will be taken into consideration as well as feedback from the product owner and other

stakeholders. This will then be reflected in the planning of the next iteration.

In the project there was constant feedback in the form of asking for assistance from colleagues as

well as feedback from teachers and supervisor. Of course, the product owner during this iteration.

Courage – The courage value refers to the courage to experiment with the code and make changes

and even reject things as time goes by without formal process. So that parts of the system can be

added or removed as seen fit without the product owner being

During the project this was used repeatedly, which in the end resulted in several code refactoring

sessions, however it led to a working version at the end of each scrum sprint, and a better piece of

software in general.

System Development Report – Group 7

11

12 Practices

In XP there are 12 practices in total, which are displayed in

Figure 2 on the right (www.XProgramming.com, n.d.). All

12 values have been implemented in the project. A few of

these will be highlighted below.

Collective Ownership – The entire team is owner of every

part of code in the entire project, thus able to edit

anywhere as needed. This also means the entire team is

responsible of every piece of code written.

Small Releases – Small releases, with a working product at the end of each 1-week sprint, means

that the product owner and stakeholders have software that can be tested (also customer tests

practice), and they can give feedback on, on a regular basis. Which incorporates both feedback and

communication values.

Coding Standards – Coding standards were put in place to ensure that every team member would

write code in the same way, think for example about the previously mentioned simplicity value (also

simple design practice), which enables high cohesion and low coupling.

Pair programming, Test-Driven Development and Refactoring are all values which have been applied

during development, from working in pairs with more skilled and least skilled members together,

writing tests for the most critical parts of the system and refactoring code as new parts get

implemented.

The use of Extreme programming has great benefits, as it gives the team a set of values and

principles to hang on to during programming. These values and practices are all

Scrum

Scrum is a project management methodology rooted in efficiency and flexibility. As mentioned in the

official description of scrum by (Schwaber & Sutherland, 2018): “Scrum (n): A framework within

which people can address complex adaptive problems, while productively and creatively delivering

products of the highest possible value.” In contrast to less dynamic development approaches, scrum

lacks a high number of hard-set roles and artifacts. It has 3 roles, namely: Product Owner, Scrum

Master and the Team. Scrum also has only 4 types of meetings that happen at specific points in the

development process: Sprint Planning, Sprint Review, Scrum Meeting, Sprint Retrospective. Each of

these performs an individual function of ensuring future work will be productive and without fault.

Scrum also only has 3 artifacts: Product Backlog, Sprint Backlog, Burndown Chart. These keep things

organized and accessible.

Scrum sprints are intended to be efficient and dynamic. This is achieved by the Sprint Backlog

artifact and the burndown chart for the Sprint. A Scrum team’s velocity is how many tasks they can

undertake from the Product Backlog into the Sprint Backlog. It is determined by the total number of

story points each of the tasks is rated at. This velocity is set as the beginning of the burndown chart

on position 0. After this a predicted velocity is drawn from that start to the last day, where the

remaining tasks should be completed, and the points exhausted. At the end of every Sprint day the

Scrum Master updates the board to match the actual progress made. This way it is clear how much

work is being done and easy to descope and remove less important tasks or add more tasks to avoid

slacking. The product owner is the one who oversees the Product Backlog, he adds and removes user

stories and changes the priority of these as he, and the stakeholders, see fit.

Figure 2: XP Practices

3rd Semester Project - Dinnergeddon

12

This way of working offers a highly flexible and agile work environment both for the Product owner

and the team alike. Changes are easily added or removed, and the team has a great degree of

freedom regarding the how they proceed with the implementation of the selected user-stories.

The downside of this approach is that this method will only works immediately from the start of a

project with an already established team. A new team or an inexperienced team will have to take

some time to get used to each other and constant changing environment that Scrum offers.

Kanban

The last methodology to be described in this report is Kanban. When compared to scrum, Kanban is

an even more free and agile approach to software development and has less required roles, rituals

and artifacts. In Kanban there are only a few rules. The use of a Kanban, the physical board which

keeps track of development, and the Kanban cards which move around on the board.

This is not a good method to be used for an inexperienced group however, and the use of additional

artifacts is often welcomed. For example, the use of backlogs and graphs in order to keep track of

features and progress in the project, if only to be able to report back to an external product owner.

As is clear from this example, if is easy to fall back to a more Scrum like methodology.

1.2. Evaluating the methodology selection using Boehm’s factors

To determine whether the project’s development is on either the agile or disciplined side, Boehm’s

five critical factors can be used. These five major decision factors are size, criticality, dynamism,

personnel and culture. For this evaluation process, (Boehm & Turner, 2003) was extensively

consulted.

By rating the project along each of the five axes it is possible to evaluate its position on the agile-

disciplined scale. If all the ratings are at the periphery, a disciplined, plan driven approach is

recommended. However, an agile methodology is suitable if they are located near the centre.

After summarizing the factors, a diagram was created. As shown in Figure 3 on the right page, the

Size, Criticality and Culture factors are close to the centre which points to a more agile approach, but

according to the Personnel and Dynamism axes a plan-driven approach would be more suitable.

Since the percentage of 1B people working on the project is above 20%, a continuous presence of

Level 2&3 would be required in an agile environment, while using a disciplined methodology could

accommodate some Level 1B people.

As far as Dynamism is concerned, a huge percentage of requirements are not expected to change,

seeing as these are directly linked to the requirements set by the educational institute. That is one of

the features of a plan-driven methodology.

The culture axes show a preference to the ‘chaotic’ side, due to the fact that the team is

enthusiastic, and feel empowered by the prospect of learning about their own ambitions; Game

Development.

System Development Report – Group 7

13

Figure 3: Dimensions Affecting Method Selection Diagram

Despite the two factors of personnel and dynamism suggesting a disciplined methodology, an agile

approach is more suitable for this project according to the size, criticality and culture factors.

1.3. Risk Analysis

A risk is something that influences the project plan or the schedule in a negative way. By analysing

the risks, unnecessary delays can be avoided concerning the project. The steps for creating a risk

analysis are the following: identify potential risks, assign probability, evaluate consequences and find

a way to handle them.

The following table (Table 1: Risk Analysis table) displays the risk for the project. Each risk has a

probability and severity associated with them on a scale of 1-5 and a total threat score which is

calculated by multiplying the probability and severity points. After calculating their probability and

severity a short solution was figured out which can either prevent a risk from happening or handle

its occurrence.

Table 1: Risk Analysis table

Risk Probability Severity Total Handling

Communication
issues

3 5 15 Practicing conversational
mindfulness and having someone
oversee group conversations and
act as a mediator.

Health
problems

3 4 12 Tasks are redistributed, or
burndown chart is updated.

Limited Sprint
length

3 4 12 Overestimating user stories, not
allowing slacking and sticking to
most-critical-first when
developing.

3rd Semester Project - Dinnergeddon

14

Bad estimation 4 2 8 Reflecting on previous sprints and
why the estimation was wrong.

Difficulty
adapting to
Scrum

2 4 8 Ensuring everyone understands
and sticks to the principles of
Scrum.

Changes to the
project

2 3 6 Ensuring the project is built with
low coupling.

Unknown
technologies

2 3 6 Research from all available
resources in order to form a
better understanding.

Version control
problems

3 1 3 Going back to previous stable
versions, having separate &
isolated development branches.

Hardware
malfunction

2 1 2 Ensuring a backup of vital
resources is kept on a remote
server.

2. Quality Assurance and Quality Control
This chapter will elaborate on what the quality criteria for this project are, and how this quality can

be assured. Quality can best be described as follows: “Quality is one or several persons assessment

on whether their expectations to and experience of a product is the same.” (Kondylis, 2018, p. 8)

In order to keep good quality of the product multiple quality assurance methods were used. One of

the most important ones is test driven development. As described above in the Dinnergeddon

project, the critical components were tested using TDD. This ensured that even after any refactoring,

the functionality of the components would remain the same.

Another method used during the development process was to constantly communicate with the

product owner, asking questions like “How do you like the user interface so far?”, “Does it lack any

functionality?”. This ensured that the product owner is happy with the progress so far and if there

are any parts of the system that they are unhappy with, they can be refactored or removed.

Pair programming also played a big part in the quality assurance as it allows the programmers to

keep each other in track with any mistakes that are made during development.

2.1. Test Driven Development

Test Driven Development (TDD) is the act of creating tests before code, so that they fail and then

refactoring code to pass the tests. This method of development ensures that functional code will be

written in a disciplined and clean way (Ambler, 2018).

For the purposes of Dinnergeddon’s development, TDD was applied to the critical components of

the project. This was to ensure those components would be implemented smoothly and with a

minimal to non-existent amount of slowdown to the development process. This also saves costs of

future need to repair or modify software and makes it easily-maintainable. Some of the principals

implemented for the project were focused on creating stubs/mocks of data, classes and methods.

These all helped contribute to isolating code to the smallest piece of functionality that could be

tested with a plethora of data to ensure proper functionality (Kondylis, 2018).

System Development Report – Group 7

15

3. Planning and Architecture
This chapter will cover both the planning of the project as well as the conceptual architecture for the

project. The project plan will highlight the goal of the project and a project plan divided into sprints,

while the architecture section will cover the client-server architecture behind the Dinnergeddon

project.

3.1. Project Plan

The overall end goal of the Dinnergeddon project was to produce an online co-operative zombie-

shooting game with a client-server architecture and web site. These main components were broken

down into smaller and easier-to-process tasks, called user stories and estimated in sprint 0 in

preparation for the rest of the sprints. The time frame for this was 5 weeks of 37 working hours

each. The process took place under strict deadlines, which had to be accounted for when planning

the development process. Below in Table 2 is the project plan, as far as it is possible to plan agile

development.

Table 2: Project Plan

Sprint # Description Hours

Sprint 0 Getting the team on the same page,
Setting up version control,
Estimating user-stories

37

Sprint 1 Implementation of the most critical parts of the project 37

Sprint 2 Additional features 37

Sprint 3 Additional features 37

Sprint 4 Additional features 37

Future development Additional features to be implemented outside the scope of
the project

xxx

3.2. Architecture

Once the project plan has been finalised it is possible

to plan for the actual architecture of the system. To

the right in Figure 4 is a visual representation of the

architecture of the server.

It elaborates how the internal projects are connected

to each other, from the database up until the two

services which expose functionality to the internet and

processes within the same server.

A client-server architecture was used for the

Dinnergeddon project. A client-server architecture is such that the server is on one machine, often

connected to the internet, that exposes information or functionality about the product. The client,

on the other hand, can connect to that server and consume that information or functionality.

(Sommerville, 2016, pp. 180-182)

The clients themselves are the web client and the dedicated WPF client. The web client is being

handled by an ASP.NET service, which also lives on the same server which allows for using WCF

services that are restricted, and sends HTML, CSS and JavaScript files to users. The WPF client

connects to the SignalR Service and the WCF Service to consume their functionality from the web.

Figure 4: Server Architecture

Database

Data Access Layer

Controller

SignalR Service WCF Service

3rd Semester Project - Dinnergeddon

16

Figure 5: Client-server architecture with external connections

In Figure 5 above is a visual representation of how clients connect to the different services on the

server. The web clients connect to the ASP.NET server, which in turn uses the internal and external

functionalities of the WCF service. The WPF clients, on the other hand, connect to the external

functionality of the WCF service and the SignalR server.

4. Reflection on the agile methodology in the project
The previous chapters explained everything that happened before the actual start of the project, the

sprints. This chapter will detail what happened in terms of system development during the sprints.

Each sprint will be mentioned separately in its own paragraph with the most important decisions

explained.

4.1. Sprint 0

Sprint 0 was an opportunity to plan and start setting up for a smooth start to the project. Since the

overall duration of the sprints is less than what is the standard according to (Schwaber & Sutherland,

2018), and because the team working on the project is inexperienced with scrum and have not

worked together before, sprint 0 was required in order to ensure a better first sprint and overall

performance during the sprints. It was decided that among other things, the Pomodoro Method

would be used to work with, since it has been proven to increase productivity for certain tasks and

prevent loss of focus on what is currently being worked on. According to (Cirillo, n.d.). Together with

this it was also decided that the story point evaluation would be based on Pomodoro blocks (each

consisting of 5 individual pomodoro sessions of 25 minutes, with 5-minute breaks in between),

which were estimated to be 2 and a half hours. This meant that 1 Pomodoro block was equal to 1

story point. This was done to ensure that the limited time would be used efficiently to accomplish

the most work. This sprint was also used to set up all the necessary software (Visual Studio), version

control (GitHub), the product plan (), product backlog and estimated the user stories with planning

poker.

Web client Web client WPF client WPF client

Internet Internet

ASP.NET WCF SignalR

 Server

System Development Report – Group 7

17

4.2. Sprint 1

Backlog

There was a total of 44 story-points in the sprint backlog at the start of sprint 1.

Review

The sprint started with two days of almost no productivity, even with strict following of the

Pomodoro Method. On the third day stand-up meeting the group agreed that the same efficiency

technique was hurting productivity and costing precious time. After this revelation the technique

was dropped and the burndown chart (shown below in Figure 6) started going down normally.

Besides these difficulties there were also inaccuracies in the point estimation for the user stories,

which eventually led to a large descoping on day 4, down to 13 story points for the sprint, which

were nearly met in order to keep an accurate representation of the team velocity, the choice was

made not to remove the stories from the backlog straight away. This way it was possible to better

estimate (or so was the idea) how many user stories could be tackled in the next sprint).

Figure 6 below shows the board at the end of sprint 1, with a team velocity of 10

Figure 6: Board at the end of Sprint 1

Product Owner: Stefan J.

Scrum Master: Linda

3rd Semester Project - Dinnergeddon

18

4.3. Sprint 2

Backlog

There was a meagre 10 story-points in the sprint backlog at the start of this sprint. It quickly became

clear the team could handle more, adding an additional 15 points (the burndown chart shows 13,

this is a mistake).

Review

This sprint started out with the opposite issue. The stories in the backlog were tackled quickly, within

the first two days. After this more stories were added to the backlog in order to maintain

productivity. These were also completed in the remaining two days, giving a better idea of how

much work can be handled in a sprint.

Figure 7 below shows the board at the end of sprint 2, with a team velocity of 25. It should be noted

that the burndown chart shows 5 days for this sprint, though in reality there were only 4 days, as 1

whole day of this sprint was consumed with sprint reviews and presentations thereof.

Figure 7: Board at the end of Sprint 2

Product Owner: Linda

Scrum Master: Dimitar

System Development Report – Group 7

19

4.4. Sprint 3

Backlog

There was a total of 25 story-points in the sprint backlog at the start of the sprint. Right from the

start the team was proceeding fast so an additional 5 points were added. Again, more fast progress

was made, and another 3 points added.

Review

After the hardships during the first two sprints, the planning disasters and inaccurate estimations

many lessons were learned. Sprint three was a prime example of that, as it was notably different in

many aspects. This could be easily picked in both planning and working aspect. The group’s

organization, preparation and estimation were much better. The group was however not working at

full efficiency due to an ill member. Sprint three started with the addition of some new user stories

and refactoring of old ones. These stories were promptly completed close to the burndown

estimation. Since a part of the project consisted of a game, the last days of sprint three were used to

set up the Unity project and do the required research. The very last day of the sprint was filled with

excitement as work on the actual game began smoothly and productively. Unfortunately, the last

user stories could not be finished in time thus 5 story-points remained on the board, this also (as

mentioned) due to illness of one team-member.

Figure 8 below shows the board at the end of sprint 3, with a team velocity of 28.

Figure 8: Board at the end of Sprint 3

Product Owner: Stefan B.

Scrum Master: Nikola

3rd Semester Project - Dinnergeddon

20

4.5. Sprint 4

Backlog

There was a total of 37 story-points in the sprint backlog at the start of the sprint. All user stories

were finished and a new small story (1 point) was added to ensure no time was wasted.

Review

The best sprint. An opportunity was given to work on the more time-consuming user stories and add

major functionality to the project, and this opportunity was seized. Although the first three days do

not show any points going down, a lot of concurrent tasks were being performed, and on day 4, they

reached completion. This created a dip and the addition of one more user story, which all got

completed by the last day of the sprint. Incredible progress was made towards a nearly-finished

product.

Figure 9 below shows the board at the end of sprint 4, with a team velocity of 38! (the burndown

chart shows 37, however this was incorrectly updated, as the additional 1 story-point was not taken

into consideration, something to keep an eye on in future projects)

Figure 9: Board at the end of Sprint 4

Product Owner: Alex

Scrum Master: Stefan J (& Stefan B in case of absence)

System Development Report – Group 7

21

5. Conclusion
In order to draw an accurate conclusion, it is vital to first look back to the research question at the

beginning of the project, which is as follows;

“How does ‘BDG’ create software which is built using C# (.NET framework) and incorporates a

client-server architecture with WCF within five Scrum sprints?”

Discussion

To answer this, let’s first have a brief recap of the project and the sprints. In sprint 0 the team was

put on the same page and the infrastructure was set up. Sprint 1 incorporated the most vital aspects

of the system, whereas sprint 2 served as a refactor and elaboration on the first sprint.

At the end of sprint two the basic software, built in C# with the .Net framework, has been

implemented using a client-server architecture with WCF. The barebones for these requirements

have taken ‘only’ two sprints (+1 for setup). Including the solution to the concurrency issue of having

multiple connections to the same server and database.

The remaining two sprints were used to further elaborate on the software and improve upon the

already existing product. Test driven development was dropped at this point, as the most critical

parts of the system were functioning properly and the implementation of small new features, it

slowed down progress more than it increased in quality.

Product owner and scrum master changed throughout the project, to give every group member a

chance to gain some experience in this position. The downside of that is that the quality of either of

the roles is inconsistent throughout the project.

Another discussion point is the duration of the sprints. The minimum viable length for a sprint

according to (Schwaber & Sutherland, 2018) is at least 2 weeks, however due to constraints in the

educational institute this was not possible. While it is understandable that there must be constraints

in order to fit all the learning outcomes into the time that is allotted for this project, it also gives a

wrong representation of the real world and hinders the implementation of certain features, for

example working in test drive development on small features. In reality however, a 5-day sprint

turns to 4 days due to sprint retrospective and presentations leaving little time to properly do TDD.

Conclusion

The team worked well together, and the use of an agile methodology had its positive effects on a

fruitful collaboration and finalization of the project and this same methodology would also be used

again in the future for development of a project of the same size and scope. Whoever with the

change of having a dedicated product owner who can keep an eye on the requirements and a

dedicated scrum master who can keep the team motivated and keep track of the activities.

The quality assurance, in terms of Test-Driven Development, was implemented only in the core

aspects of the product. In future projects however, sprint length will have to be longer to assure

enough time to work in a TDD way and retain the high-quality standard.

3rd Semester Project - Dinnergeddon

22

6. Evaluation
The following chapter evaluates the project and the individual team members. Each section will look

back on the development process taking into consideration both planning, personal preference and

decision making. Individual feedback will also be given in the form of reflection on personal goals,

skills and knowledge.

6.1. Project Evaluation

The project for the semester was very challenging, but also very exciting. As soon as the project

started, the group had to overcome the need for better communication, since the two computer

science classes were merged together, and half of the group’s six members came from one class,

while the other half came from the other class. Despite the challenge that having six introverts in a

group presented, everyone slowly learned how to effectively communicate with each other. Most of

the group’s members had the desire to continue their education by specializing in Game

Development, however news came around that such a course was not to be held for the next

semester. As disappointing as it was, the loss of one opportunity only paved the road for another

and prompted a collective decision for developing a game and getting much desired, but

educationally unavailable experience within this sphere. For a short period of time, during the start

of the project, the excitement transitioned into doubt, as no one had any game programming

experience, and it was even hard to grasp how to do things. No one even knew how and where to

start. Proper communication, and refusal to give up on this great idea, helped diminish the notion of

insecurity, and work slowly started. The lack of knowledge on the topic not only was not

detrimental, but proved very valuable, since the time spent on reading and researching brought

group members together in learning many new things and acquiring a broader range of skills.

Around the middle of the project each member’s individual preferences made them de-facto an

expert in a different field of programming, which was extremely beneficial for the overall shape of

the project, and everyone was quite satisfied with the achieved outcome.

6.2. Individual evaluations

This section will go into the individual evaluations of each group member. The feedback given below

is feedback from the whole group to the individual person, starting off with a section for the group.

The group

Each group member had to deal with their own (varying degrees of) social anxiety not only towards

the other members they were familiar with, but especially towards the ones that were new. Despite

this, everyone was focused on achieving the common goal, and everyone was trying to improve the

communication within the group. Slowly but surely each one learned how to patiently listen to what

the others have to say. Then, after everyone has expressed their opinions, concerns, suggestions and

advises, a deliberation would take place as to what the best solution for taking on a problem or

planning ahead would be. This helped setting up goals and workflow that everyone would have a

clear understanding for. While communication kept improving throughout the project, it was no

longer something that was consciously brought up. Even though everyone was engaged in every

aspect of the project, personal desire for success and productiveness helped each group member

greatly contribute in their own field of expertise and the quality of work was easily noticeable. This

not only improved the overall shape of the end-product but pushed everyone one step ahead into

personally acquiring new knowledge and skills.

System Development Report – Group 7

23

Stefan Nikolaev Borisov

Stefan had good ideas throughout the project and his opinions were highly appreciated. However

sometimes these good ideas and opinions were overshadowed by his sense of humour, which in turn

led to some awkward moments.

Possible points for improvement:

Taking on a leadership role in a project, can have a positive effect on his overall sense of

responsibility and improve his productivity by keeping him focussed on the long-term goals.

Linda Augustina Carolus Fuchs

Throughout the whole project, Linda proved to be best suited for Scrum Master. Her organizational

and administrative skills helped the group be organized and cooperative while also inputting great

theoretical knowledge throughout the development process.

Possible points for improvement:

Although Linda was very helpful to everyone in the group, that turned out the be a con when she

spent too much time trying to help others, while not focusing on the task at hand. What she should

do is devote more time to completing her tasks before helping group mates.

Alexander Ignácz

Alex was incredibly positive and doesn’t easily get discouraged or allow his morale to fall. He was

also productive in the tasks he does, without the need of help from the group. Alex was very

adaptable to changes as well.

Possible points for improvement:

He should be more confident in his ideas and opinions. They should be proposed during discussion

or conversations because they are valid and educated.

Stefan Jõemägi

Stefan was very similar to Alex in that he was easily productive with any task he undertook. His

morale was also difficult to contest. He was very adaptable as well.

Possible points for improvement:

Speak up as well, he was the most silent from the group. Should say out his opinion more frequently,

not only when being told to do so.

Dimitar Bogomilov Pilyakov

One of Dimitar’s strongest assets was being capable of ensuring that the team remained focused

when working and having discussions.

Possible points for improvement:

However his attention to deadlines and staying focussed was slightly too much sometimes and

caused him to ‘freak out’ over smaller details. This could be improved by having a timely

conversation with the group when there is has a problem. In a leadership position Dimitar can be

more steadfast of his own opinions and knowledge, as his contributions are greatly valued, though

he sometimes does not see this himself.

3rd Semester Project - Dinnergeddon

24

Nikola Anastasov Velichkov

Nikola was among the most productive group members. He was very enthusiastic in taking on any

role, including the role of a leader. He was the one to push people to express their opinions.

Possible points for improvement:

Nikola should be less concerned about being pushy and be more confident that his solutions are

valid. He should also remain more focused on his tasks and not get distracted by small details.

System Development Report – Group 7

25

Appendix 1. Literature list

Ambler, S. W., 2018. Introduction to Test Driven Development (TDD). [Online]

Available at: http://agiledata.org/essays/tdd.html

[Accessed 2018].

Boehm, B. & Turner, R., 2003. Rebalancing Your Organization’s Agility and Discipline, s.l.: s.n.

Cirillo, F., n.d. Pomodoro Technique. [Online]

Available at: https://francescocirillo.com/pages/pomodoro-technique

Kniberg, H. & Skarin, M., 2010. Kanban and Scrum; making the most of both. s.l.:C4Media.

Kondylis, D., 2018. Quality Assurance and Quality Control Presentation. [Online]

[Accessed October 2018].

Kondylis, D., 2018. Test Driven Development presentation. [Online]

[Accessed October 2018].

Nordjylland, University College, 2018. Project_3 (dmai0719). [Online]

Available at: https://ucn.instructure.com/courses/12801

[Accessed October 2018].

Schwaber , K. & Sutherland, J., 2018. Scrum Guide. [Online]

Available at: https://www.scrumguides.org/scrum-guide.html

[Accessed October 2018].

Sommerville, I., 2016. Software Engineering. 10th ed. Harlow: Pearson Education Limited.

University College Nordjylland, 2014. Curriculum for the Academy Profession Degree Programme in

Computer Science. National Section. [Online]

Available at: https://www.ucn.dk/

[Accessed 5th November 2018].

www.XProgramming.com, n.d. XP Practices. [Art].

Young, David C.; Computer Sciences Corporation, 2013. Software Development Methodologies.

[Online]

Available at:

https://www.asc.edu/sites/default/files/org_sections/HPC/documents/sw_devel_methods.pdf

[Accessed 18th May 2018].

3rd Semester Project - Dinnergeddon

26

Appendix 2. 3rd Semester Project Group Contract
Group 7 – Best Design Group

• Deliver a completed and functional product

• Learn to write clean code that adheres to proper code standards and naming conventions,

making it easy to follow the three pillars of object-oriented programming and make changes

to the program if needed.

• Write down a separate section for these code standards in the programming report,

highlighting, among other things, naming in ‘Camel Case’, C# get and set standards, tab

width, and code column size.

• Attractive and usable user interface for both website and the developed application that

takes into consideration the 10 heuristics of proper GUI development

• Be present and participate in the stand-up sprint meetings. Be proactive and take initiative.

• Be responsible in group work, in case of absence inform the group and if possible, work from

home. The group should be able to show understanding to personal situations.

• Pair programming (2 devs., 1 keyboard) and switching from day to day to learn to write C#

and use the .NET framework together.

• Make decisions as a group and keep discussing the pros and cons until we can have a

unanimous decision.

• BE ON TIME! this includes being back on time from lunch breaks during class.

• Have some team building exercises during the months.

System Development Report – Group 7

27

Appendix 3. Problem Statement

BDG - Dinnergeddon

Student names Stefan Nikolaev Borisov
Linda Augustina Carolus Fuchs
Alexander Ignácz
Stefan Jõemägi
Dimitar Bogomilov Pilyakov
Nikola Anastasov Velichkov

Title (initial) Dinnergeddon

Subject

Best Design Group (BDG) has been contacted by Worst Production Company
(WPC) with a request for a retro game. WPC wants a demo of a game that
shows a concept of zombies going rogue in a dinner show so that they can
see how their customers would react to it.

WPC has requested BDG to create a web application to go with the game so
that players could sign-up for a dinner show specifically with their friends.
Furthermore, the company can only afford one server.

Problem /
Problem area

Due to the company’s limited resources, storage space and server
architecture will have to be taken into consideration. As there would be
multiple connections to the server, concurrency would have to be
accounted for. The company wishes to use a website so that users will be
able to download their game, register and reserve spaces for the game
online.

Problem
statement

• How does BDG create software which is built using C# (.NET

framework) and incorporates a client-server architecture with WCF

within five Scrum sprints?

o How is a seamless user experience using WPF for a

dedicated client achieved?

o How is a seamless user experience using HTML, CSS and

JavaScript for a web application created?

o How are possible concurrency issues which can occur in a

multiple user environment solved?

Method /
procedure

During the project, Scrum and XP will be used as the main development
methodology. For the back-end, C#’s WCF service has been chosen as a
means of connecting to the web application and the game itself. The web
application is going to be developed using various web technologies
consisting of HTML, CSS and JavaScript primarily. The user interface of the
dedicated client will be developed using WPF. The database will be created
using Microsoft SQL.

3rd Semester Project - Dinnergeddon

28

